

* 3AДAYA * ОБОСНОВАНІЯ ГЕОМЕТРІИ.

Прив.-Доц. В. КАГАНВ.

Прив.-доц, В. КАГАНЪ,

Задача обоснованія геометріи въ современной постановкђ,

Рбчь, произнесенная при защить диссертаціи на степень магистра чистой математики.

ОДЕССА.
Типографія Акціонернаго Южно-Русскаго Общества Печатнаго Двла.
1908.

Приватъ-доцента В. Кагана.

Abstract

Рґчь, произнесенная при защитв диссертаціи*) на степень магистра чистой математики.

Около 3000 лъътъ тому назадъ индусскій математикъ Ганези вшервые указалъ, что площадь круга равна площади прямоугольника, основаніемъ котораго с.лжжитъ полуокружность, а высотойрадіусъ этого круга. Въ подтвержденіе онъ приводитъ такой чертежъ. Кругъ раздъленъ на 2 полукруга, каждый изъ которыхъ, въ свою очередь, раздъленъ на 6 секторовъ. Эти секторы съ вытянутыми основаніями размб̆щаются въ фигуру, напоминающую двґ пилы. Если мы сдвинемъ эти двъ пилы, то получимъ прямоугольникъ, о которомъ идетъ рєчь. Надъ этимъ чертежомъ, вверху, помъщено одно слово, долженствующее, очевидно, замънить то, что мы называемъ доказательствомъ,-долженствующее удостовърить правильность высказанной истины. Это слово гласитъ: "смотри". Это безхитростное ашшеллированіе къ интуиціи, какъ единственному удостовъренію правильности высказанной истины, знаменуетъ, конечно, младенческое состояніе геометріи. Съ какимъ негодованіемъ отвергъ бы такую наивную аргументацію не только современный математикъ, но и всякій, кто обучался въ школб геометріи.

Д処ствительно, съ первыхъ же уроковъ ему твердиля что математика вообще, а геометрія въ частности и въ особ̈енности, есть наука дедуктивная; что истины свои, именуемићтеоремами,

[^0]она доказываетъ，т．е．путемъ ряда умозаключеній выводитъ ихъ изъ небольшого числа элементарныхъ истинъ，называемыхъ аксіомами，при пособіи опредъленій；ему твердили，что геометрія признаетъ только строгія доказательства，т．е．логически безу－ пречныя，и если бы онъ высказалъ сомнъніе，нужно ли，въ са－ момъ дълъ，доказывать такую ясную истину，что изъ точки，взятой на прямой можно къ ней возставить въ плоскости одинъ и только одинъ перпендикуляръ，－то это несомнъннно вызвало бы строгое осужденіе со стороны учителя．

Преуспљвалъ ли юноша въ математикъ или нвтъ，онъ оста－ вляетъ шъолу съ одинаковымъ благоговъніемъ передъ строгой ло－ гикой геометрическихъ разсужденій．И если онъ настолько любо－ знателенъ，что склоненъ заглянуть также и въ книгу философскаго содержанія，то глубокая въра въ неотразимую силу геометрической логики，привитая учебникомъ и учителемъ，укрねпляется въ немъ философомъ．Здбсь математика вообще，а геометрія опять таки въ частности и въ особенности，пріобрътаетъ совершенно исключи－ тельный ореолъ и，что для насъ особенно важно，－не столько по фактическому своему содержанію，сколько по методамъ изсль－ дованія．На геометріи выясняетъ，а часто и строитъ свои теоріи логика，на ней сосредоточены изслбдованія и сомнљнія теоріи познанія，ея авторитетомъ неръдко прикрываетъ многія безсодер－ жательныя разсужденія метафизика，которой у насъ еще гораздо больше，ч爻ъ это принято думать．

Но при всей этой вљръ въ безупречную силу геометриче－ скаго метода，съ тъхъ поръ，какъ греческій геній оторвалъ геоме－ трію отъ узкихъ задачъ，которыя ей ставили египетскіе жрецы， и сдълалъ ее предметомъ свободнаго творчества，наиболъе глу－ бокіе мыслите́ли всегда высказывали сомньннія－если не относи－ тельно фактической правильности геометрическихъ истийь，то относительно уо́вдительности геометрическихъ доказательствъ， какъ строго логическихъ выводовъ．„Я часто прихоі⿻𨈑㇒弓⿱丆贝凡 къ дока－ зательствамъ＂，пишетъ，напримжръ，Гауссъ，„котерьдя убъдили бы всякаго другого；мнь же они не говорятъ ничеде

И дЂйствительно，достаточно лишь немमюуо отръшиться отъ вкоренившейся въры въ безупречную строность геометрическихъ доказательствъ，чтобы уббдиться，что этиеомнюнія имъютъ подъ собой глубокія основанія．

Въ самомъ дълъ, что такое логическій выводъ? Принимая извъстную систему предложеній A , мы часто бываемъ вынуждены принять другія предложенія B , которыя явно, непосредственно въ системъ А не содержатся. Въ такомъ случаъ говорятъ, что предложенія В представляютъ собой выводъ изъ системы A, слъдствіе этой системы. Доказать предложеніе В при помощи системы А - значитъ обнаружить, что, принимая систему предложеній А, мы вынуждены, въ силу законовъ нашего мышленія, принять предложеніе В. Если поэтому система А не дана, то требованіе доказать предложеніе B сводится къ слбддющему: показать, что, принимая неизв连стночто, я вынужденъ принять предложеніе В. При всей нелъпости такого рода задачи трудно повърить, кањъ часто человъческая мысль, скажу больше, научная мысль замыкается въ этотъ ложный кругъ. Совершенно несомнъ̆нно, что современная геометрія, какъ система не интуитивная, а логическая,-представляетъ собой именно такого рода ложный кругъ.

Кто хочетъ въ этомъ убждиться, долженъ только спросить себя, гдъ же та система предложеній А, изъ которыхъ мы должны выводить геометрическія истины. Эти прэдложенія съ давнихъ поръ назывались аксіомами или постулатами, хотя къ нимъ должны быть отнесены и опредъленія. Гдъ же та система аксіомъ, изъ которыхъ выводится наша геометрія? Въ нашихъ учебникахъ геометріи вы ихъ не найдете. Во всъхъ руководствахъ указывается, что такое аксіома, утверждается, что вся геоме трія развивается изъ небольшого числа такихъ аксіомъ; но списка аксіомъ мы не находимъ, всегда указано только нбсколько аксіомъ въ качествЋ прим米ровъ. Тъ же учебники, которые пытаются дЂйствительно положить въ основу геометріи опредъленную систему аксіомъ, обнаруживаютъ только слабое развитіе автора и полное отсутствіе знанія литературы. Непосвященному кажетс $}$
 нятся въ дидактическихъ задачахъ элементарнаго учебникая что гдъ-то тамъ, въ научной литературъ эти основныя посюйнии геометріи приведены, что только школьникамъ предлагаетеэ дъл.лать выводы изъ того, что имъ неизвъстно. И многіе, пири томъ лучшіе изъ этихъ юношей, приходя сюда въ унивеюСитетъ, дййствительно настойчиво требуютъ, чтобы мы указажый ймъ сочине́нія,

въ которыхъ они найдутъ эти посылки элементарной геометріи, которыя раскроютъ передъ ними ту безупречную логическую дисциплину, о которой они такъ много слышали отъ учителя, учили въ учебникахъ, читали въ философскихъ сочиненіяхъ. И они уходятъ отъ насъ глубоко разочарованными, такихъ сочиненій мы имъ предложить не можемъ. Мы можемъ только, пожалуй, указать имъ небольшое число итальянскихъ и нъжмецкихъ мемуаровъ, относящихся къ послвднему десятилытіію и содержащихъ первыя попытки разръшить эту задачу. Къ этимъ мемуарамъ мнб придется еще возвратиться позже; покамъстъ замъчу только, что тв, которые ръшаются въ нихъ заглянуть, обыкновенно оставляютъ ихъ съ поникшей головой; эти сочиненія, относящіяся къ основнымъ элементамъ науки, очень мало доступны.

Такого же сочиненія, которое не только давало бы полную систему геометрическихъ аксіомъ, но фактически строго формально построило бы на нихъ систему геометріи, мы не имъемъ и по сей день.

Но что же въ такомъ случаъ представляютъ собой обычныя геометрическія доказательства?

Чтобы отвљтить на этотъ вопросъ, мы разсмотримъ здъсь одно изъ такихъ доказательствъ, заимствованное изъ наиболъе распространеннаго у насъ учебника геометріи.

Ржчь идетъ о теоремъ, о которой я уже упоминалъ: изъ точки на прямой можно на плоскости возстановить къ ней одинъ и только одинъ перпендикуляръ
 Вотъ какъ ведетъ доказательство этого предложенія г. Киселевъ.

Пусть АВ будетъ данная прямая, О точка на ней (фия, 1). Нужно доказать, что изъ точки O въ плоскости чертежа ऽ мөжно провести одинъ и толька вдинъ перпендикуляръ. Предпцтожимъ для этого, что лучъ ОА врацается, оставаясь въ Пэоскости чертежа, вокругъ точки O въ направленіи къ своему продолженію OB. Тогда онъ образуетъ съ начальнымъ юъий положеніемъ углы $\mathrm{AOA}^{\prime}, \mathrm{AOA}^{\prime}, \mathrm{AOA}^{\prime} \ldots$, которые сначажд \quad сстаются меньше своихъ

смежныхъ угловъ，а затьмъ，по мъръ того，какъ лучъ ОА прибли－ жается къ лучу ОВ，становятся больше своихъ смежныхъ угловъ． Итакъ，уголъ АОА＇сначала остается меньше своего смежнаго угла，а затьмъ становится больше его．Въ промежуткъ，слбдовательно， будетъ моментъ，когда онъ будетъ равенъ своему смежному углу． Лучъ займетъ тогда положеніе ОС，перпендикулярное къ АВ．Въ слъдующій моментъ уголъ сдълается уже больше смежнаго угла，а потому больше одного перпендикуляра быть не можетъ．

Обращаясь къ анализу этого доказательства，замђтимъ прежде всего，что основнымъ орудіемъ доказательства здъсь слу－ житъ движеніе．Но что такое движеніе？

Въ отвътъ на этотъ вопросъ я отнюдь не намъренъ дълать попытку вводить васъ въ обширную область неясныхъ разсужде－ ній，которыя предлагаютъ физіологи，психологи，метафоизики，－ область，въ которой，быть можетъ，только математики завоевали скромный，но прочный уголокъ．На это в冘дь не могъ разсчиты－ вать и авторъ нашего руководства．Ясно，что на движеніе онъ смотритъ，какъ на нбчто，дальнъйшему поясненію не подлежащее： процессъ，усвоенный нами при помощи внকшнихъ чувствъ，глав－ нымъ образомъ，путемъ созерцанія，настолько отчетливо，что онъ сдЂлался однимъ изъ основныхъ элементовъ нашего сознанія．И противъ этого ржшительно нельзя спорить，поскольку мы поль－ зуемся этимъ процессомъ для нагляднаго поясненія нашей мысли или факта．Но если мы хотимъ．воспользоваться движеніемъ，какъ орудіемъ дедукціи，логическаго вывода，то мы необходимо должны указать тъ свойства движенія，которыя могутъ и будутъ слу－ жить посылками этого вывода，которыя въ данномъ случаґ нужны геометру．И это не фикція；вс究 свойства движенія，которыя ＇нужны геометріи，были позднъе указаны Софусомъ Ји；но ихъ вы еще не найдете въ руководствахъ по геометріи；ноътъ ихъъ конечно，и у нашего автора．Движеніе есть для него интуитивдяकй процессъ，и，аппеллируя къ нему，онъ не имねетъ мужествя ска－ зать намъ опредъленно：„с м о т р и＂．

Однако，прослбдимъ это доказательство дальшю При дви－ женіи луча ОА уголъ AOA^{\prime} остается сначала меньие смежнаго угла $\mathrm{A}^{\prime} \mathrm{OB}$ ，а затьмъ，когда движущійся лучъ прииближается къ ОВ，онъ становится больше его．

Почему，спросимъ мы．Но вбдь это ясно，какъ Божій день； развъ въ этомъ можно усомниться？

Конечно，глазу это совершенно ясно．Но гдъ же тутъ логика？Гдъ же тутъ выводъ，гдъ геометрическая дедукція，гдъ тъ предпосланныя свойства этихъ угловъ и движенія，отъ кото－ рыхъ можно къ этому факту прійти путемъ умозаключенія？И эти свойства не фикціи．Если бы авторъ д九йствительно хотв．тъ оставаться на почвъ вывода，онъ долженъ былъ бы прежде всего
 т．е．какими ихъ свойствами въ примънненіи къ угламъ можетъ воспользоваться геометръ．Указать такія свойства пытались еще Больцано и Грассманъ；въ настоящее время это выполнено Шату－ новскимъ и Гильбертомъ．Но старая геометрія，т．е．，строго говоря， геометрія прошлаго десятилвтія отъ этого далека，и нашъ авторъ， приводя свою тираду，молчаливо говоритъ намъ：„смотри＂．

И вслбдствіе того，читаемъ мы дальше，что уголъ AOA^{\prime} былъ сначала меньше смежнаго угла，а затвмъ сталъ больше его，долженъ былъ быть промежуточный моментъ，когда уголъ АОА ${ }^{\prime}$ былъ равенъ своему смежному углу．

Но изъ чего，изъ какихъ предпосы：окъ автора это слбдуетъ？ Въ надлежащей постановкъ вопроса это д九йствительно можно выве－ сти изъ принциша непрерывности，какъ его установилъ Дедекиндъ； но этого，конечно，нбттъ и не можетъ быть въ нашемъ руководствъ．

Таково „строгое＂доказательство одного изъ важнъйшихъ предложеній геометріи，такова сила „геометрической дедукціи＂． Это не слабое доказательство，зд屯сь нбтъ и слъда доқазатель－ ства；здъсь нб⿱宀女тъ даже и попытки произвести умозаключеніе，есть только одна интуиція，есть только то，что древній писатель три тысячи лбтъ тому назадъ просто выразилъ словомъ „смотри＂．А если такъ，то не проще ли было отказаться отъ всякаго жолоказа－ тельства，нарисовать вотъ этотъ чертежъ（фиг．2）и написать наверху правдивое слово Ганези．

Можетъ показаться，что я выбралъ дурное деноводство и．ли подобралъ случайно неудачное доказательство．Ко это не такъ． Книга，о которой идетъ ръчь，все же предсяввляетъ собой одно изъ ．лучшихъ сочиненій этого рода．Если доказательство этого пред－ ложенія не содержитъ никакого выводя，то въ другихъ доказа－ тельствахъ интуиція уснащаетъ вывөझж，дополняетъ его．

Но что же въ этомъ собственно худого? Что худого въ томъ, что геометръ въ своемъ изслфдованіи и въ доказательствð руководствуется не только синтезомъ, но и интуиціей, глазомъ? РазвЉ результаты оказались отъ этого менље достовърными? Развъ геометрія при этомъ не разрослась въ могучее зданіе, служащее фундаментомъ вс市ъ точныхъ наукъ и въ то же время гордо возвышающее свою главу надъ ними? Да, это такъ; но задача науки заключа ется не только въ томъ, чтобы собирать матеріалъ, факты, которые при достаточномъ накопленіи часто забываются раньше, чъмъ съ ними успъли познакомиться. Задача науки заключается также въ томъ,
 чтобы объединить эти факты въ одну систему, чтобы указать внутреннюю связь между ними, чтобы установить табъ называемые принципы науки, т. е. тђ факты, которые обусловливаютъ собой остальные; чтобы выяснить дбйствительное содержаніе ея истинъ, не умаляя грубой интуиціей того, что въ нихъ содержится, и не присваивая имъ по традиціи того, что въ нихъ не вложено; чтобы отдать себ́ отчеть въ каждомъ терминъ, которымъ мы пользуемся, а не считать яснымъ все то, что мы привычно повторяемъ. Задача науки заключается, наконецъ, въ томъ, чтобы выяснить источникъ, изъ котораго мы черпаемъ ея истины; не тъ, конечно, истины, которыя логически выводятся изъ другихъ и, слъДовательно, въ этихъ послъднихъ имъютъ свой источникъ, а тъ, которыя сами служатъ предпосылками остальныхъ, такъ называемыя основныя положенія науки, въ геометріи—ея аксіомы и опредљленія. Но для того, чтобы выяснить источникъ основныхъ положеній науки, ихъ нужно знать, ихъ нужно установ ит б.

Я не знаю, привелъ ли я достаточныя основанія неустяди-
 ствительно претворить ее въ строго дедуктивную наубу. Или, быть можетъ, я еще долженъ былъ сказать, чтд बциествуютъ стремленія, которыя сами себъ довлъютъ и, тая въодеб́в несознан-
 неожиданно раскрывая передъ ними широкіе сृоризонты.

Такъ или иначе, но стремленія об́основать геометрію не прекращались въ теченіе трехъ тысячъ лътъ ея существованія. Смънялись народы, культивировавшіе геометрію. Отъ египетскихъ жрецовъ она перешла къ греческимъ философамъ, развившимъ ее въ обширную науку; съ развалинъ греческой культуры она перешла къ арабамъ и ими вновь перенесена въ Европу - въ Италію и въ Испанію; ее культивировали нжмецкіе монахи и французскіе ученые.

МЖнялись методы математическаго изслъдованія. Тонкій синтезъ греческихъ геометровъ нашелъ опору у арабскихъ аналистовъ; народилась тригонометрія, выросла алгебра, сложился анализъ безконечно малыхъ - и всъ эти методы и изслъдованія нашли себъ широкое примбненіе въ геометріи. Была построена аналитичесная геометрія, дифференціальная геометрія. И точно въ противовъсъ этимъ алчнымъ стремленіямъ анализа народилась новая синтетическая геометрія, такъ называемая геометрія ноложенія.

Наконецъ, кореннымъ образомъ мънялись философскія воззрънія. На смъну древнимъ умозръніямъ и средневъковой метафизикъ пришла позитивная философія, предъявлявшая метафизикъ опреджлленныя положительныя требованія. И при всжхъ этихъ метаморфозахъ, предъ лицомъ важн九йшихъ задачъ, разрєшенія которыхъ настойчиво и неотложно требовали другія науки,-математики не оставляли основъ геометріи и при томъ въ такой мъръъ, что я затрудняюсь назвать выдающагося геометра, который не отдалъ бы дани этому направленію.

Первыя попытки обосновать геометрію относятся къ глубокой древности. Гишократъ Хіосскій нашисалъ уже въ этомъ направленіи цвллое сочиненіе въ V въъъ до Р. Х. Какъ обқ) ттомъ, такъ и 0 другихъ сочиненіяхъ въ этомъ же направленей Хюы имъемъ только косвенныя свъдЋнія, но глубокій знатоюу греческой геометріи Поль Таннери приходитъ къ заключеніюө, что это были уже глубоко продуманныя системы. Ни одно ивбु, этихъ сочиненій до насъ не дошло; всъ они остались въ тыны, क्व затямъ были вовсе забыты, когда появилось одно изъ замдфчательнъйшихъ науч-
 бтогдгі̃"—"Начала Евклида".

Говорить здъсь объ Евклидъ подробно я，конечно，не могу． Кто читалъ эту великую книгу，кто умълъ понять ть трудности， преодолвть которыя было необходимо ея автору，тотъ научился удивляться греческому мудрецу и генію народа，представителемъ котораго онъ явился．

Опираясь на труды своихъ предшественниковъ，Евклидъ со－ здалъ замжчательную геометрическую систему，которая оставила далеко за собой все，что было написано въ этомъ направленіи раньше，и конкуррировать съ которой не ръшился ни одинъ изъ
 ＂Составитель Началъ＂сдълалось собственнымъ именемъ，подъ которымъ всӊ позднъйшіе греческіе геометры разумъли Евклида， а самыя „Начала＂сдблались учебникомъ，по которому въ теченіе двухъ тысячельтій учились геометріи юноши и взрослые；для мате－ матиковъ же эта книга сдълалась библіей，источниюомъ откровенія．

Каждая изъ 12 книгъ „Началъ＂начинается рядомъ опредъ－ леній всьхъ тьхъ терминовъ，юоторые въ нихъ появляются；пер－ вой же книгь предпосланы постулаты（аiтŋ̀ца兀а）и аксіомы（жоьраі हैvขoıиı）．Далъе слъдуютъ одна за другой，безъ всякихъ связу－ ющихъ разсужденій теоремы съ ихъ доказательствами，со ссыл－ ками на предыдущія предложенія，постулаты и аксіомы．

Для Евглида нбтъ мелочей；всъ детали догазательствъ，не－ обходимость которыхъ онъ умъетъ предусмотръть，даже наиболъе легкія，онъ излагаетъ съ тъмъ же спокойствіемъ，съ какимъ его великій соотечественникъ Гомеръ описываетъ каждый шагъ своихъ героевъ－людей и боговъ．

При всей своей замљчательной послбдовательности система Евклида сугубо страдаетъ，конечно，твми недостатками，которыхъ， какъ я старался выяснить，не могутъ избжгнуть и позднжйшіе авторы；его опредъленія основныхъ терминовъ расплывчаты ил
 ими воспользоваться；его постулаты и аксіомы недостаточныำ 刀юя дъйствительнаго синтетическаго развитія геометріи；его 円юаза－ тельства представляютъ собой систематическое сплетеніе＜унтуиціи съ выводомъ．

Вскоръ посль Евклида почти одновременно ждлй и творили три геометра，занимающіе，можно сказать，самоя выдающееся мねсто въ исторіи греческой математики．Ә九я оыли Архимедъ，

Эратосөенъ и Ашюолоній．Трудами этихъ геніальныхъ людей гео－ метрія была доведена до высокой степени совершенства．„Евглидъ， Архимедъ，Эратосөенъ и Ашюлоній＂，говоритъ Морицъ Канторъ， „довели математику до такой высоты，дальше которой старыми средствами ее невозможно было развивать．И не только выше нельзя было подняться，но и достигнутыя вершины науки были вскоръ изслждованы во всжхъ направленіяхъ．Оставалось вер－ нуться обратно，осмотржться，разобраться въ частностяхъ того матеріала，мимо которыхъ проскользнули творцы науки，б́ыстро взбираясь на ея крутизны＂．

Съ этой именно эпохи начинается усиленное стремленіе къ обоснованію началъ геометріи；оно ослабћвало въ періоды паде－ нія общаго интереса къ наукъ и крєпло съ ея возрожденіемъ． Оно не прекращалось даже въ эпоху такой интенсивной творче－ ской работы въ области математики，накой яв．яятея XV＇III сто－ лф̆тіе и начало XIX．Амперъ，Јейбницъ，Декарть，Ла－ гранжъ，Јежандръ，Фурье，Гауссъ，—всњ размышляли объ основаніяхъ геометріи，стараясь，по выраженію Лобачевскаго， „пролить св宋ъ на тъ темныя понятія，съ которыхъ，повторяя Евклида，начинаемъ мы геометрію＂．
„Начала＂Евклида представляли собой ту нанву，по которой разматывались эти разсужденія．Оставить его въ сторонъ и по－ пытаться построить геометрическую систему независимо отъ Ев－ клида не р屯̆шился никто ；его можно было только дополнять и комментировать．

Я не буду останавливаться на этихъ комментаріяхъ，растя－ нувшихся на полтора тысячелътія．Они совершили необходимую кропотливую работу отрицательнаго характера．Они выяснили слаб́ыя стороны Евклида，они разрушили легенду о логическомъ совершенствъ его системы．Но гритиковать легко，а творитьднеиз－ мЋримо труднъе；не только комментаторы Евклида，с поу даже Лежандръ，который черезъ два тысячельтія впервые вню马ъ рєшился нашисать „Начала＂геометріи，не былъ въ состояніюю 乃ғести въ эту систему коренныхъ улучшеній．Для этого нужнәоыло занять со－ вершенно новую позицію，которая еще не वынау завоевана．

Это завоеваніе неразрывно связано вд исторіей пятаго по－ стулата въ „Началахъ＂Евклида，которнй थасто называютъ короче „аксіомой о паралллельности＂．

Содержаніе этого постулата закючается въ слбдующемъ： если двЋ прямыя，расположенныя въ одной плоскости，при пере－ съченіи съ третьей образуютъ внутренніе односторонніе углы， сумма которыхъ не равна двумъ прямымъ，то съ той стороны，гдъ эта сумма меньше двухъ прямыхъ，эти прямыя пересъкаются．

Этотъ постулатъ неизмъримо сложнъе остальныхъ постула－ товъ Евклида；онъ предполагаетъ уже извъстныя знанія，онъ даже не усваивается сразу．Ему，правда，можно придать болже простую форму；большинство присутствующихъ，вбрроятно，знаетъ его въ той формъ，въ какой онъ приведенъ въ „Началахъ＂．Jе－ жандра：если изъ двухъ прямыхъ，расположенныхъ въ одной пло－ скости，одна перпендикулярна къ съкущей，а другая наклонна къ с九кущей，то онъ пересъкаются со стороны остраго угла．Но и въ этой формъ это далеко не та элементарная истина，какія мы привыкли называть аксіомами．А что，быть можетъ，важнже всего，надобность въ этой аксіомъ появляется довольно поздно：у Евклида въ 29－й теоремъ；фактически же ее можно было бы ото－ двинуть еще гораздо дальше，т．е．въ томъ только смыслъ，что въ „Началахъ＂，кромъ первыхъ 28 теоремъ，есть еще очень много предложеній，которыя могутъ быть доказаны безъ пособія V по－ сту．лата．Геометрическій матеріа．лъ，такимъ образомъ，разбивается на дв九 части．Значительная часть этого матеріала совершенно не зависитъ отъ постулата о параллельныхъ，т．е．можетъ быть развита безъ этого постулата；затємъ появляется этотъ тяжело－ в孔сный постулатъ，за которымъ слбдуетъ вторая часть，ни одна
 Сюда относится，напримъръ，теорема о томъ，что сумма угловъ въ треугольникъ равна $2 d$ ，теорія пропорціональныхъ линій，тео－ рія площадей и объемовъ．

Эта своеобразная роль，которую играетъ пятый постулатъ Евклида，и была причиной того，что явилось стремленіе доказакถ̆ этотъ постулатъ，т．е．вывести его логически изъ осталюдипо ъ постулатовъ．Трудно себ́ґ представить，сколько на это был ®आтра－ чено силъ．Правда，доказательствомъ евклидова посттдяа зани－ мались и по сей день занимаются многіе，не толькฎсие имъющіе слбда геометрическаго дарованія，но не имбюй дяже серьез－ ныхъ знаній．Но въ то же время отъ Птадемея до Јежандра врядъ ли можно назвать выдающагося геометра，который не испы－

талъ бы своихъ силъ на этой неблагодарной задачð, который не пошытался бы завоевать эту неприступную кръпость. Чтобы вы себґ составили представленіе о томъ, въ какой мъръ эта задача овладъвала иногда геометромъ, позвольте привести вамъ письмо старика Больэ, друга Гаусса, изв九стнаго венгерскаго профессора, по сочиненіямъ котораго свыше полустолвтія обучалась вся Венгрія. Это письмо Больэ написалъ своему геніальному сыну Іоанну, когда онъ узналъ, что послъддній также увлекся задачей о параллельныхъ линіяхъ.
„Молю тебя, не дъълай только и ты попытокъ одолътть теорію параллельныхъ линій; ты затратишь на это все свое время, а предложенія этого вы не догажете всє вмъстъ. Не пытайся одолъть теорію параллельныхъ линій ни тъмъ способомъ, который ты сообщаешь мнж, ни какимъ либо другимъ. Я изучилъ всб пути до конца; я не встрєтилъ ни одной идеи, которой бы я не разрабатывалъ. Я прошелъ весь безпросвбтный мракъ этой ночи, и всякій св九точъ, всякую радость жизни я въ ней похоронилъ. Ради Бога, молю теб́я, оставь эту матерію, страшись ея не меньше, нежели чувственныхъ увлеченій, потому что и она можетъ лишить теб́я всего твоего времени, здоровья, покоя, всего счастья твоей жизни. Этотъ безпросвътный мракъ можетъ нотопить тысячи ньютоновскихъ башенъ. Онъ никогда не прояснится на землð, и никогда несчастный родъ человъческій не будетъ владъть чъммълибо совершеннымъ даже въ геометріи. Это болышая и вбчная рана въ моей душъ"...

Этого довольно, письмо еще длинно и служитъ доказательствомъ того, что и родительскій совъттъ тоже можетъ быть неправиленъ, ибо Іоанну удалось разсъять этотъ мракъ въ теоріи параллельныхъ линій.

Но не въ томъ смыслъ, чтобы онъ дъйствительно доказалъ постулатъ Евклида. Всє предложенныя доказательства былы неправильны; онљ явно или неявно вводили другой постулатч, равносильный доказываемому. Эти доказательства стали диюодметомъ спеціальныхъ изслбддованій, которыя обнаружили, утояй одно изъ нихъ не выдерживаетъ серьезной критики.
„Многія идеи", говоритъ I. Больэ, „какъ ба им имютъ свою эпоху, во время которой онъ открываются длновременно въ различныхъ мъстахъ подобно тому, какъ фіали®) весной произростаютъ всюду, гдћ̆ сввттитъ солнце".

Больэ даже не зналъ，въ какой мъръ онъ былъ правъ． Вопросъ，представлявшій загадку въ теченіе тысячелकттій，почти одновременно былъ разръшенъ，правда，не съ одинаковой полнотой， независимо ц光лымъ рядомъ геометровъ．Эти идеи смутно созна－ вали уже Саккери и Ламбертъ．Къ этимъ идеямъ пришелъ Гауссъ， всю жизнь размышлявшій надъ основами геометріи подъ сводами Геттингенской обсерваторіи；объ этихъ идеяхъ пишетъ Гауссу нвккто Швейкартъ，юристъ изъ Магдебурга，состоявшій съ 1812 по 1817 г．г．профессоромъ права въ Харьковъ；племянникъ по－ слвдняго Тауринусъ，безвременно погибшій талантливый юноша Вахтеръ；къ этимъ идеямъ пришелъ де－Тилли．Наконецъ，полное развитіе этихъ идей дали Іоаннъ Больэ и Јобачевскій，затрати－ вшіе на это всю свою жизнь，не зная другъ друга，не встржчая сочувствія ни съ чьей стороны．

Между твмъ это было одно изъ наиболъе поразительныхъ завоеваній человъческой мысли．

Точка отправленія у всжхъ этихъ геометровъ одна и та же． Они имъютъ въ виду доказать постулатъ отъ противнаго．Они исходятъ поэтому изъ предположенія，что это предложеніе не－ справедливо；иными словами，они принимаютъ，что першен－ дикуляръ и наклонная къ сжкущей могутъ и не пересккаться． Ц九ль изслъдованія，какъ обыкновенно при доказательствахъ отъ， противнаго，заключается въ томъ，чтобы，развивая слбдствія та－ кого допущенія，придти къ абсурду，т．е．къ явному противоръ－ чію съ предыдущими постулатами．

Однако，тонко разматывая выводы этого абсурднаго на пер－ вый взглядъ допущенія，Јобачевскій и Больэ къ такому проти－ воржчію не пришли．Т．е．они пришли къ разительному противо－ ръчію съ интуиціей，съ тъмъ，что доступно глазу；но не было противоръчія логическаго，не было противорєчія съ остальными постулатами Евклида．Напротивъ，тонкій анализъ этихъ геніалю̆－ ныхъ людей нанизывалъ одинъ выводъ на другой，и，чъмъ даяпопе шли эти выводы，тъмъ глубже становилось уо́вжденіе，чге зддсь противоржчія вовсе н屯̆тъ；что возможна другая геомелйя，отлич－ ная оть нашей，－геометрія，которая принимаетт остальные постулаты Евклида，а вмбсто пятаго постулата－принимаетъ про－ тивоположное допущеніе．Какъ мы уже сказа．лията геометрія рас－ ходится съ интуиціей，съ твмъ，что мы видимж้ въ втой геометріи

два перпендикуляра Ћъ одной прямой на плоскости не остаются на равныхъ одинъ отъ другого разстояніяхъ，а безпредъльно рас－ ходятся；въ этой геомѐтріи н欠্ঞтъ подобныхъ фигуръ，сумма угловъ прямоугольнаго треугольника всегда меньше $2 d$ и мбннется отъ одного треугольника къ другому；и при всемъ томъ она пора－ зительно стройна，она изъ себя разматываетъ свою своеобразную тригонометрію，а отсюда аналитичеческую и дифференціальную геометрію．

Чтобы д危ствительно уяснить себぁ，что таюое неевклидова геометрія，ее нужно изучить．Это поверхностное изложеніе въ публичной рбчи имъетъ только цълью лишній разъ обратить вни－ маніе на эти въ высшей степени замъчательныя идеи；но для того，кто продълаетъ эту тонкую работу мысли，кто усвоитъ эту замбчательную систему，для того это цблле міровоззръніе．„Изъ ничего＂，писалъ Іоаннъ Больэ отцу，„я создалъ цвлый міръ＂．

Нужно было много таланта，чтобы этотъ міръ создать，нужно было еще больше смълости，чтобы раскрыть его людямъ，чтобы выступить публично съ этими идеями．Гауссъ не рбшался на это въ теченіе цฎлой жизни，и только ближайшіе его друзья были посвящены въ странныя идеи великаго геометра относительно основъ геометріи．Онъ откровенно говоритъ въ своихъ письмахъ， что опасается крика Беотійцевъ，что осы，въковое гнвздо кото－ рыхъ раззоряется，подымутся надъ его головой．А между тбмъ только его авторитетъ и могъ преодолвть вظюовые предразсудки． Но онъ этого не сдълалъ；напротивъ，всъ мольбы Тауринуса и Іоанна Больэ не заставили его высказать печатно то，что онъ писалъ объ ихъ сочиненіяхъ въ письмахъ．Не къ чести его должно быть сказано，что несомнбнно по его винг эти талант－ ливые люди преждевременно погибли для жизни и науки．

Первое печатное изложеніе „Новой геометріи＂принадлежитъ Лобачевскому． 12 февраля 1826 г．онъ изложилъ ихъ въя яасъ－ даніи физико－математическаго факультета Казанскаго сюиверси－ тета，а въ 1829 г．опубликовалъ въ I томъ „Записо色にазанскаго университета．Не понятый и осмъянный，онъ некбжегъ своихъ работъ，какъ Тауринусъ，не ушелъ отъ людей бнаّъъ Больэ．Онъ мужественно боролся за свои идеи цхлую。 иизнь；онъ всесто－ ронне ихъ разрабатывалъ и развилъ ихж ทевизмримо глубже и детальнъе，чбмъ Больэ．Не встрътивъ нинаго человъка，который

бы его понялъ, не говорю уже - оцвнилъ, онъ, слъпой, на краю могилы еще разъ продиктовалъ свое великое научное завъщаніе.

То была великая трагедія человъческой жизни, безкровный нодвигъ ученаго.

Гауссъ скончался въ 1855 г. Въ слбдующемъ году умерли Лобачевскій и Вольфгангъ Больэ, а въ 1860 г. сошелъ въ могилу и I. Больэ. Нஷсколько геніальныхъ людей, стоявшихъ впереди своего вঞка, сошли въ могилу, а ихъ замъчательныя творенія были забыты.

Къ какому выводу, однако, приводитъ эта новая геометрія по отношенію къ пятому постулату Евклида? Какъ мы сказали выше, доказать этотъ постулатъ - значило бы обнаружить, что, принимая остальные постулаты Евклида, мы логически вынуждены принять и этотъ. Но если оказывается, что мы вовсе не вынуждены принять также пятый постулатъ, что, сохраняя остальные постулаты Евклида, мы можемъ построить геометрію, замънивъ пятый постулатъ противоположнымъ допущеніемъ, то это означаетъ, что пятый постулатъ не представляетъ собой логическаго слъдствія изъ остальныхъ постулатовъ Евклида, что онъ и не можетъ быть доказанъ. Этотъ выводъ неизбґженъ, если правильна геометрія Лобачевскаго, если она не приводитъ къ абсурду, какъ бы далеко мы ее ни развивали. Итакъ, мы стоимъ передъ дилеммой: либо геометрія Јобачевскаго въ своемъ развитіи необходимо должна привести къ абсурду, и тогда постулатъ Евклида доказанъ; либо геометрія Лобачевскаго не содержитъ противоржчія, тогда невозможно доказать Евглидова постулата. Если бы Лобачевскій доказалъ, что его геометрія не можетъ привести къ абсурду, сколько бы мы ее ни развивали, то вопросъ былъ бы ржшенъ. „Какъ это. ни странно", говоритъ Оствальдъ, "но общая черта въ психологіи всякаго изслб̆дователя заклюю чается въ томъ, что онъ не доходитъ до конца того пути, котөө-
 не въ психологіи. Всю жизнь онъ старался доказать, чтеяго система не можетъ привести къ противоръчію, но это жыу" не удавалось. Онъ былъ чрезвычайно близокъ къ этому Чесли хотите, въ скрытомъ видъ это доказательство у него уже е́сть, но онъ не можетъ надлежащимъ образомъ его формулирюрать; ему не хватаетъ для этого еще одной идеи.

Въ началъ шестидесятыхъ годовъ Петерсъ началъ издавать переписку между Гауссомъ и Шумахеромъ. Во второмъ томъ, появившемся въ 1860 г., помбщены два письма отъ 1831 г., изъ которыхъ второе содержитъ граткое изложеніе взглядовъ Гаусса на основы геометріи. Въ пятомъ томъ, появившемся въ 1863 г., помжщено письмо, въ которомъ Гауссъ даетъ восторженный отзывъ о работъ Лобачевскаго.

Эти письма обратили вниманіе всего математическаго міра на работы Лобачевскаго, и его „Воображаемая геометрія" вновь была призвана къ жизни. Оставляя въ сторонъ сгромные труды Бальцера, Баттальини и Гуэля, имকвшіе цблью выяснить идеи Лобачевскаго, мы обращаемся къ работв Бельтрами, появившейся въ 1868 г.

Бельтрами много занимался теоріей поверхностей; цвлый рядъ мемуаровъ, опубликованныхъ имъ по этому предмету, относится къ обширному циклу тьхъ работъ, которыя имбютъ въ виду развить идеи, изложенныя Гауссомъ въ его безсмертномъ мемуарж "Disquisitiones generales circa superficies curvas".

Кагъ плоскость имљетъ свою геометрію, которую мы называемъ пл аниметріей, татъ и кривая поверхность можетъ имбть свою геометрію. Наиболье извъстна въ этомъ смысль геометрія сферы, на которой окружности большихъ круговъ замбняютъ прямыя линіи плоской геометріи. Сферическая геометрія изучаетъ образы на сферической поверхности, сферическіе треугольники, условія ихъ конгруэнтности, измъреніе ихъ площадей. Эта геометрія естественно отличается отъ плоской геометріи, такъ кагъ мы имকемъ здъсь другую поверхность, другіе образы. Замъчательное свойство сферы заключается въ томъ, что части этой поверхности могутъ передвигаться цо ней безъ разрыва и складокъ; она вездб имъетъ, какъ говорятъ геометры, одинаковлюо, или постоянную гривизну. Изслядованіемъ такого рода поверхностей, на которыхъ возможно такое передвиженіе, мнюбо занимались еще до Вельтрами; при этомъ обнаружилоєо что существуютъ два главныхъ типа этихъ поверхностей: 凤онинъ-сферическій, другой-Бельтрами назвалъ п с ө в доюяе р и ч е с к имъ. И вотъ совершенно неожиданно Бельтрамио донаружилъ, что на этихъ поверхностяхъ имъетъ мъсто пласка г геометрія Јобачевскаго. Это значить: на каждой части такой поверхности образы

сохраняютъ здъсь совершенно т党 же соотношенія, какія имъюютъ мъсто между соотвътствующими образами въ планиметріи Лобачевскаго. Подобно тому, какъ на сферъ стороны сферическаго треугольника связаны уравненіями сферической тригонометріи, элементы псевдосферическаго треугольника связаны тбми уравненіями, которыя составляютъ тригонометрію Лобачевскаго. Всљ странности плоской геометріи Лобачевскаго находятъ себъ здбсь не только подтвержденіе, нंо и поясненіе.

Мемуаръ Бельтрами въ короткое время получилъ широкое распространеніе въ математическомъ мірь. Впечатлъніе, произведенное имъ, было громадно. Причина отрицательнаго отношенія къ неевклидовой геометріи заключалась въ томъ, что геометры связывали съ геометрическими понятіями опредъленныя представленія, съ которыми геометрія считалась неразрывно связанной. Поэтому геометрическая система, находившаяся въ прямомъ противоръчіи съ тъми образами, съ которыми геометрія считалась неразрывно связанной, казалась непонятной однимъ и даже нелъпостью другимъ. Съ появленіемъ мемуара Бельтрами все сразу измжнилось. Двумকрная гишерболическая геометрія получила реальное истолюованіе, былъ указанъ рядъ образовъ, шъ которымъ она примвняется. Говорить о нелбпости этой системы сдвлалось невозможнымъ; напротивъ, построеніе этой системы а priori и ея подтвержденіе а posteriori служили лучшимъ подтвержденіемъ формальнаго характера геометріи; - точка зрънія, которую до нькоторой степени признавали, можно сказать, всж философы, но которую довелъ до конца и имълъ смълость формулировать во всей ея наготв Германъ Грассманъ, ташже не дожившій до признанія его идей. Но „мудрецъ отличенъ отъ глупца тъмъ, что онъ мыслитъ до конца".

Ничто такъ не содЋйствовало выясненію формальнаго зна ченія геометріи, какъ открытіе неевклидовой геометріи и ея поптвержденіе а posteriori. Въ чемъ же заключается эта фордіядиная точка зрънія? Она говоритъ, что мы жестоко ошибаемея, когда связываемъ геометрію съ нвготорыми опредъленныдой образами, въ которыхъ намъ рисуются точки, прямыя, уғлбю плоскости,главное, когда мы думаемъ, что геометрія связана съ этими образами неразрывно; когда мы себњ рисуемъ проуую, какъ безпредъльно тонкій безконечный лучъ, или пдобқюсть, какъ безконечно

тонкую пластинку．Напротивъ，съ этими образами геометрія со－ вершенно не связана．Она исходитъ только изъ нбкоторыхъ тер－ миновъ，съ которыми не связываетъ никакихъ опредъленныхъ представленій，и изъ нжскольнихъ основныхъ предложеній，изъ которыхъ она разматывается по законамъ силлогистики，путемъ послъдовательнаго замъщенія терминовъ，совершенно независимо отъ того содержанія，которое въ эти термины вгладывается．И если мы этихъ основныхъ терминовъ не умъемъ выдълить，если мы не умъемъ указать этихъ основныхъ предложеній，то это только потому，что мы ихъ не знаемъ，－потому，что процессъ этотъ совершался ощушью，безсознательно，что шелъ онъ фактически не по тому пути，который соотвътствуетъ его дъйствительному значенію．

Ту систему образовъ на псевдосферъ，на которой осуще－ ствляется плоская геометрія Јобачевскаго，Бельтрами называетъ интерпретаціей этой геометріи．Съ такой точки зржнія тв образы，въ которыхъ мы привыкли себ́ঞ представлять основные объекты геометріи，－точки，прямыя，плоскости и т．д．－предста－ вляютъ собой тагже только интерпретацію，иллюстрацію обыкно－ венной Евклидовой геометріи．Это есть одна система образовъ， кағъ теперь говорятъ－одно многообразіе，въ которомъ наша гео－ метрія находитъ осуществленіе．Но это не единственная совокупность объектовъ，не единственное многообразіе，къ которому примбняется на́ша геометрія．Возможны другія системы объектовъ，другія многообразія，къ которымъ также примъняется обыкновенная Евклидова геометрія．

Постараюсь выяснить это на простъйшемъ примъръ．Выбе－ ремъ опредъ．ленный радіусъ，скажемъ въ 1 футъ，и представимъ себ※ всж безъ исключенія сферы въ пространствґ，имъющія этотъ радіусъ．Они представляютъ собой нъкоторую совокупность，ком－ плексъ，какъ мы уже сказали，м ногообразіе．Забудемъ тежерь на короткое время，что мы прежде обычно разумъли подъ терми－ нами＂точка＂，„прямая＂и т．д．，и условимся под⿸户口 еяовомъ „точъа＂разумфть каждую изъ нашихъ сферъ；эти \＆хферы мы
 нечные цилиндры того же радіуса；эти цилиндрюลиы будемъ назы－ вать прямыми．Мы будемъ говорить，чтд гочка лежитъ
＊）Для ясности мы отмъчаемъ разрядкей вогда слова＂точка＂и ＂прямая＂употребляются въ этомъ новомъ＾воёмъ значеніи．

на прямой, когда соотвътствующая сфера цхллиюомъ лежитъ внутри соотвбтствующаго цилиндра, т. е. вписана въ этотъ Цилиндръ: цилиндръ касается сферы по окружности большого круга்

Фиг. 3.

въ виду равенства діаметровъ, какъ это видно на фиг. 3. Мы будемъ говорить, что наши прямыя пересъкаются, когда они имъютъ (фиг. 4) об щ у точк у, т. е. когда соотвбтствующіе

цилиндры имъютъ общую єферу, и т. д. Въ тагюм случаґ къ этимъ образамъ, къ этому многообразію вполнљь пимбняется Евклидова геометрія. Фигура 3 изображаетъ, дмя двъ наши точки вполн⿵门 опредбляютъ проходящую черезъ дийь прям ую линію.

Фигура 5 изображаетъ, что черезъ одну и ту же точку проходитъ множество прямыхъ, имъющихъ эту общую точку. Фи-

Фиг. 5.
гура 6 изображаетъ, что черезъ точк у, лежащую вню пр я м о й,

Фиг. 6.
можно къ ней провести только одинъ пермендикуляръ фигура 7 изображаетъ, что черезъ точку, лежайчю внъ пр я м о й, можно

къ ней провести только одну параллельную пр ям у и т. д. Это, кажется, очень ясно; къ этому многообразію такъ же примьняется обыкновенная Евклидова геометрія, какъ она примьняется къ тымъ образамъ, съ которыми мы обычно соединяемъ понятія о точкахъ, прямьхъ и т. д. Это др угая интерпретація Евклидовой геометріи, другое многообразіе, къ которому она примьняется.

Фиг. 7.

Но можетъ быть, это слишкомъ ясно, можетъ быть, я взялъ слишкомъ тривіальное многообразіе, я, такъ сказать, сохранилъ тъ же точки и прямыя, тольюо сдълалъ ихъ толще. Позвольте для выясненія этой чрезвычайно важной идеи остановиться еще на одномъ примъръ, на одномъ многообразік, указанномъ талантливымъ французскимъ геометромъ Пуанкаре.

Представьте себґ на плоскости всевозможныя окружност возможныхъ радіусовъ, проходящихъ черезъ одну и ту же деччку O, связку окружностей, какъ ее принято называяб, Будемъ теперь подъ то ч к а м и разумбть, какъ обыкновенна Ч्रочки нашей плоскости, за исключеніемъ только точки O; мы выбросимъ, мы опустимъ эту точку, мы исключимъ ее изъ клекости, ея н字тъ въ нашемъ новомъ многообразіи. Я грубо ятя выразилъ на этой

фигуръ (фиг. 8), вырхзавъ кружокъ вокругъ точки О. Итакъ, нащими новыми точками будутъ служить прежнія точки нашей плоскости, кромъ точки О. Но подъ пр я м ы м и мы будемъ теперь разумбть окружности и прямыя, проходящія черезъ выключенную точку $О$ (фиг. 8). Какъ это ни странно на первый взглядъ, но въ этомъ многообразіи при этомъ пониманіи т очекъ и прямыхъ безусловно сохранится Евклидова геометрія; каждое предложеніе обыкновенной геометріи выражаетъ свойство, этому многообразію дऊйствительно присущее. Нужно не много вниманія, чтобы уяснить

Фиг. 8.

себж, что черезъ любыя двЋ наши точки проходитъ всегда одна и только одна наша прям ая, т. е. окружность нашей связки (фиг. 9), что двъ наши прямыя могутъ пересбкаться тольюо въ одной точк в, что изъ точки, взятой на прямой, къ ней можно провести одинъ и только одинъ перпендикуляръ (фиг. 109) что черезъ точку, взятую внъ прямой, можно провести къ пей только одну параллельную прямую (фиг. 11) и т. д.

Я нњсколько забфгаю, быть можетъ, впереддя но я долженъ сказать, что такихъ многообразій, осуществляяоляихъ обыкновенную геометрію, можно теперь указать множества В В публичной ръчи, повторяю, можно развъ только охватитб яямую идею; но кто продумаетъ эти многообразія глубоко, томлетановится кристаллически

ясно, что связывать нашу геометрію съ какой-либо опреддлленной системой образовъ нбттъ ни мал九йшихъ основаній.

Итакъ, различіе между представителями стараго дедуктивизма и строгаго формализма заключается въ томъ, что первые утверждали, что наша геометрія развивается чисто дедуктивно, и въ то же время связывали ее съ опредъленной системой привычныхъ пространственныхъ образовъ; послъддніе же утверждаютъ,

Фиг. 9.

- что старая геометрія далека отъ такого совершенства, но что истины ея, добытыя чисто эмпирически, абсолютно не зависятъ отъ того субстрата, съ которымъ ее обыкновенно связываютъ, а потому она можетъ и должна быть построена сама изъ себя, т. е. изъ собственныхъ носылокъ, независимо отъ всякаго субстрата опредъленной формаціи.

Быть можетъ, по существу, эта разница только, такъ скајать, количественная; но при извъстныхъ размърахъ количестверныхъ разница сама собой становится качественной.

Первыми рєшительными приверженцами строгад форормализма въ математикъ, какъ я уже сказалъ, былъ Гермайъ Грассманъ; онъ провелъ свои идеи черезъ науку чиселъ (Оคаписалъ первую дъйствительно научную ариөметику. Въ геаметрію же твердой и

смълой рукой ввели такую постановку вопроса Бернгардъ Риманъ и Германъ ф.-Гельмгольцъ. Физіологъ и математикъ, исходя отъ тонкихъ проблемъ теоріи функцій-одинъ, а другой-отъ вопросовъ физіологической оптики, пришли къ однимъ и твмъ же взглядамъ на основы геометріи. Вслбддъ за появленіемъ работы Вельтрами Дедекиндъ опубликовалъ посмертный мемуаръ Римана „Ueber die Hypothesen, die der Geometrie zu Grunde liegen", а вслъддъ за нимъ и Гельмгольцъ напечаталъ свою работу подъ аналогичнымъ заглавіемъ „Ueber die Thatsachen, die der Geometrie zu Grunde liegen".

Риману принадлежитъ и самое слово „многообразіе" (Mannigfaltigkeit), которое я уже неоднократно употреблялъ.

Впрочемъ, элементомъ многообразія, къ которому примъняется геометрія, у Римана является просто нжюкоторая совокупность чиселъ. Если совокупность трехъ вещественныхъ чиселъ x, y, z будемъ называть точкой, если мы каждой паръ такихъ точекъ x_{1}, y_{1}, z_{1} и x_{2}, y_{2}, z_{2} отнесемъ число

$$
\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)+\left(z_{1}-z_{2}\right)^{2}}
$$

которое назовемъ разстояніемъ между этими точками, если мы будемъ разумбть нодъ плоскостью совокупность такихъ точекъ, числа которыхъ (x, y, z) удовлетворяютъ линейному уравненію
$A x+B y+C z+D=0$, а подъ прямой-совокупность точекъ, удовлетворяющихъ двумъ такимъ уравненіяящъ,
 комъ съ наченытми аналитичесжй геометріи, ясно, даяя въ этомъ числеинойъ многообразіи, и.ыи, какъ теперь чаще
 ществляется геометрія Евклида.

Но если такъ, если, принимая извљстныя числовыя групшы за точки, извъстныя функціи отъ координатъ за разстоянія, мы получаемъ многообразіе, Ћъ которому примъняется Евклидова геометрія, то что собственно связываетъ насъ съ этимъ именно выраженіемъ разстоянія? Что будетъ, если мы иначе распредълимъ разстоянія. Риманъ, впрочемъ, ставитъ вопросъ нকсколько иначе. Элементъ, диффференціалъ дуги выражается обычно формулой

$$
\begin{equation*}
\sqrt{d x^{2}+d y^{2}+d z^{2}} \tag{1}
\end{equation*}
$$

а въ косоугольныхъ или криволинейныхъ координатахъ формулой вида

$$
\begin{equation*}
\sqrt{a d x^{2}+b a y^{2}+c d z^{2}+f d x d y+g d y d z+h d x d z} \tag{2}
\end{equation*}
$$

гдъ коәффиціенты опредвленнымъ образомъ зависятъ отъ перемвнныхъ x, y, z.

Что же будетъ, спрашиваетъ Риманъ, если мы за диффференціалы длины примемъ любое такое выраженіе, т. е. корень квадратный изъ квадратичной формы отъ дифференціаловъ координатъ, коэффиціенты которой суть совершенно произвольныя функціи отъ координатъ. Риманъ обнаружилъ, что, коль скоро въ этомъ многообразіи возможно свободное движеніе, то выраженіе это можетъ быть всегда преобразованіемъ координатъ приведено къ виду:

$$
\begin{equation*}
\frac{\sqrt{d x^{2}+d y^{2}+d z^{2}}}{1+\frac{a}{4}\left(x^{2}+y^{2}+z^{2}\right)} \tag{3}
\end{equation*}
$$

Здฬсь а есть постоянная, которую Риманъ назвалъ кр ивизной м ногообразія. Если эта постоянная равна нулю, то мы возвращаемся къ выраженію (1), т. е. мы получаемъ Евклидову геометрію. Если a имљетъ отрицательное значеніе, то мы получаемъ геометрію Лобачевскаго; если же a имねетъ положительное значеніе, то мы получаемъ третью геометрію, открытую Риманомъ. Эта геометрія еще больше отличается отъ Евглидовой. такъ какъ въ ней не имьетъ мьста таюже и постулатъ, что щюямая вполнъ опредвляется двумя точками; всъ прямыя ижююотъ въ этой геометріи конечную длину и попарно переськжвотся въ двухъ точкахъ и т. д.
 заніемъ; его не такъ просто выразить въ немногихक्ष словахъ, но, я полагаю, я буду очень близокъ Ћъ истинж, если формулирую идею Гельмгольца тагъ:

Если въ пространствљ возможно всякое движеніе, коль скоро къ этому не встръчается препятствія со стороны того единственнаго требованія, что разстоянія не должны мфняться при движе-
 ніи, то дифференціалъ дуги непбходимо долженъ выражаться формулой (3), т. е. мы необходимо приходимъ къ одной изъ трехъ геометрическихъ системъ.

Этому мемуару нельзя достаточно надивиться. Если хотите, зд丈сь все неправильно. Неправильна постановка вопроса, неправильны методы его ржшенія. И черезъ это сплетеніе ошибокъ Гельмгольцъ благополучно приходитъ къ результату, по существу, совершенно правильному. Софусу Ји принадлежитъ заслуга правильной постановки и ржшенія этой задачи.

Риманъ и Гельмгольцъ окончательно оторвали геометрію отъ того реальнаго субстрата, съ которымъ ее связывали въ теченіе тысячелбтій. Вмґстъ съ тфмъ вопросы, связанные съ основами геометріи, принимаютъ аналитическій характеръ и излагать ихъ содержаніе, не предполагая довольно глубокихъ спеціальныхъ знаній, трудно, въ особенности, имъя передъ собой уже утомленныхъ слушателей. Я хотьлъ бы еще поэтому остановиться только на одномъ вопросъ, имðющемъ большую важность.

Какъ вы виддли, многообразія, въ которыхъ оперируютъ Риманъ и Гельмгольцъ, чрезвычайно далеки отъ системы тбхъ образовъ, которы்е мы связываемъ обычно съ геометрическими представленіями. При всемъ томъ они говорятъ о движел этомъ многообразіи. Что же такое эти движенія? Каковбожю свойства геометрическаго движенія, которыя могутъ бытюдтеренесены въ любое многообразіе, даже въ многообразіе чисеелъ, въ аналитическое пространство?

Позвольте прежде всего обратить ваяпе вниманіе на сльдующее обстоятельство. Въ геометріи мц○ ностоянно пользуемся движеніемъ, оно играетъ очень важную роюь при цоказательствахь,

а между тфмъ фактически мы его никогда не производимъ．Мы не только этого не производимъ，мы р屯̆шительно не въ состоя－ ніи произвести движеній，которыя нужны геометру．Въ самомъ дълъъ，движеніемъ мы пользуемся для производства наложенія，мы налагаемъ одно тъло на другое．Но если мы смотримъ на твло только，какъ на часть пространства，то взять часть простран－ ства съ одного мъста и перенести его на другое－невозможно． Перенести можно только твло，физическое твло；но тогда какъ совмфстить такое твло съ другимъ，гакъ можетъ оно про－ никнуть въ другое твло？

Если мы вникнемъ въ то，чъмъ мы интересуемся，когда апшелируемъ въ геометріи къ движенію，то мы увидимъ，что намъ всегда важно только знать，съ какой точкой совмбщается при этомъ каждая точка переносимаго твла．Иными словами，каждой
 Мы устанавливаемъ такимъ образомъ соотв九ттствіе между точками перваго и второго твла；мы осуществляемъ это соотвбтствіе при помощи движенія，такъ какъ точка В второго тыла，соотвът－ ствующая точкъ А перваго тъла，есть та，въ которую движеніе переноситъ эту точку A ．Но если мы то же соотв九тствіе между точками одного и другого твла установимъ кагъ－либо иначе，то роль механическаго движенія будетъ исчерпана．

Этотъ процессъ не представляетъ исключительной принад－ лежности геометріи；напротивъ，это чрезвычайно важное，неотъ－ емлемое орудіе нашей мысли въ любой области．„Чрезвычайно важную и характерную способность нашего духа＂，говоритъ Деде－ киндъ，„представляетъ собой процессъ，заключающійся въ томъ， что мы относимъ вещь къ вещи，ассоціируемт одну вещь другой，отображаемъ одну вещь въ другой＂．Этотъ про－ цессъ въ логикъ и психологіи издавна называется ас соціа п і е й， въ математигъ его называютъ сопряженіемъ．

Итакъ，процессъ сопряженія заключаетсся вв
 носимъ н我которую，вообще говоря，другжоточку того жеили другого образа．

Движеніе играетъ для геометріи исключитеильно ту роль，что оно устанавливаетъ нъкоторое сопряженіе проттранства，многооб－ разія съ самимъ собой．

Чтобы еще лучше выяснить важное понятіе о сопряженіи， возьмемъ простой примъръ．Пусть АВ будетъ нъкоторый отржзокъ． Каждой точгъ С этого отрєзка，которая отстоитъ на разстояніи c отъ точки А，отнесемъ，въ качествъ соотв光ствующей，точку C^{\prime} ， отстоящую на то же разстояніе c отъ точки В．Этимъ каждой точкъ отржзка будетъ отнесена другая точка，этимъ будетъ уста－ новлено сопряженіе отръзка съ самимъ собой．Это именно сопря－ женіе можетъ быть тақже установлено движеніемъ，если мы по－ вернемъ отржзоъъ другой стороной；каждая точка С упадетъ при этомъ въ соотв禾тствующую точку C^{\prime} ．

Геометрія давно изучала различнаго рода сопряженія；одно изъ нихъ，извъстное подъ названіемъ проективнаго соот－ в岇тствія，составляетъ даже предметъ особой дисциплины，полу－ чившей названіе проективной геометріи，или геометріи положенія．

Но ть соотв安тствія，которыя устанавливаются движеніями， имбютъ три важныя особенности．

Во－первыхъ，если нকккоторое движеніе совмক̆щаетъ тъло А съ тбломъ B，то каждая точка твла А безъ исключенія приходитъ въ н末ккоторую точку другого тъла B；и обратно，въ каждую точку твла В приходитъ нбкоторая точка твла А．Иначе говоря，дви－ женіе относитъ каждой точкъ перваго тъла безъ исключенія одну и только одну точку второго твла，и обратно：оно относитъ каждую точку второго твла одной и только одной точкъ перваго тъыла．

Это мы выразимъ терминомъ：движенія суть сопряженія соверіенныя．

Замътимъ при этомъ слъдующее．Положимъ，что нвкоторое движеніе совмфщаетъ твло А съ твломъ В．Мы всегда можемъ представить себъ неизмбняемую среду，неразрывно связанную съ тыломъ А и охватывающую все пространство．Движеніе совмбд－ щаетъ каждую точку этой среды съ нъкоторой точкой щроятран－ ства，и мы можемъ，такимъ образомъ，сказать，что ${ }^{\circ}$ лйиженіе есть совершенное сопряженіе пространсдяяа ст са－ MиМт CO σ Oй．

Во－вторыхъ，при движеніи разстоянія жежду точками не мб̈няютея；т．е．если точки А и В совмъщаписяя съ точками А＇и B^{\prime} ，то разстояніе AB равно разстоянію $\mathcal{A}(B)$ ．Разстояніе можетъ быть выражено числомъ；съ точки зржнй формальной разстояніе

только и есть число. Это свойство движенія выражаютъ такъ: при сопряженіяхъ, устанавливаемыхъ движеніемъ, каждая пара точекъ имжетъ ч и с л енны й ин в а р і ант ъ, и этой системой инваріантовъ, этой системой разстояній исчерпываются всє неизмбняемыя при движеніи свойства образовъ.

Въ третьихъ, каждое тьло можетъ быть въ пространствъ перенесено изъ одного положенія въ другое, т. е. въ пространствґ существуетъ безчисленное множество различныхъ преобразованій. Но если есть движеніе, готорое совмбщаетъ тбло А съ тбломъ В, а затъмъ другое движеніе совмбщаетъ тъло В съ твломъ С, то существуетъ третье движеніе, которое совмЋщаетъ тьло А съ твломъ С.

Иными словами, совокупность тьхъ преобразованій, которыя составляютъ систему движеній въ пространств方, обладаетъ тьмъ свойствомъ, что каждымъ двумъ преобразованіямъ этой совокупности всегда отвбчаетъ третье, замбняющее послбдовательное пространство первыхъ двухъ преобразованій. Это свойство системы преобразованій очень часто встржчается въ математикъ помимо движеній и характеризуется терминомъ: г р у п п а преобразованій.

Итагь, системадвиженій въ пространств夫есть группа совершенныхъ преобразованій, въ кото-
 притомъ только одинъ.

Это единственныя общія свойства движеній, которыя нужны геометру и которыя нисколько не связаны съ тьми реальными представленіями, какія съ эмпирическимъ движеніемъ соединяются. Эта формулировка принадлежитъ Софусу Ли. Выясненію этихъ геометрическихъ свойствъ движенія, быть можеть, болье трудныхъ и неясныхъ работъ Римана и Гельмгольца, содъйствовала удивительно талантливая по своей простоть и изяществж интерпретація геометріи, указанная Клейномъ. Исходя изъ рабожы Кели, тагже довольно туманной по своему содержанію, и ппрйнимая за движенія совокупность проективныхъ преобразовஷிїй, не мљняющихъ нбкоторой поверхности второго порядка, жннйнъ самыми элементарными средствами построилъ многөоразіе, которое, смотря по выбору неизмъняемой поверхности, воспроизводитъ Евклидову геометрію, геометрію Јобачевскаго Фии геометрію Римана. Это осуществленіе геометріи можетъ быть построено какъ

геометрически, т. е. на почвљ Евклидовой геометріи, такъ и ана-литически-въ числахъ. И возможность построенія аналитическихъ многообразій, какъ теперь говорятъ „аналитическихъ пространствъ", осуществляющихъ какъ одну, такъ и другую и третью геометрію служитъ доказательствомъ того, что ни одна, ни другая, ни третья геометрія не содержитъ логическаго противорєчія,-доказательство, достовърное постольку, поскольку достовърна ариөметика.

Софусъ же Ли обнаружилъ, что всякая группа совершенныхъ и непрерывныхъ преобразованій въ непрерывномъ пространствъ трехъ измӊреній, которыя имъюютъ одинъ и только одинъ инва-ріантъ-разстояніе между двумя точками-(при нбкоторыхъ весьма ограниченныхъ дополнительныхъ условіяхъ), необходимо приводитъ либо къ системб движеній Евклидова пространства, либо къ системъ движеній геометріи Лобачевскаго, либо къ системъ движеній геометріи Римана.

Въ теченіе семидесятыхъ и восьмидесятыхъ годовъ выяснилось, такимъ образомъ, истинное значеніе геометрическихъ системъ Лобачевскаго, Больэ и Римана; выяснилось, что V постулатъ Евклида не зависитъ отъ остальныхъ, не представляетъ собой ихъ слъддствія, не можетъ быть доказанъ; выяснилось, что геометрія не связана съ той системой образовъ, которую, - быть можетъ, тоже неправильно, - называютъ эмпирическимъ пространствомъ; выяснилось, напротивъ, что геометрія щредставляетъ лишь рядъ соглашеній, которыми мы удобно выражаемъ обширную категорію соотношеній между физическими тблами; что она съ успбхомъ выражаетъ и иныя соотношенія между иными образами, если послбдднія подходятъ подъ основныя соглашенія; выяснилось, что такихъ многообразій, осуществляющихъ Евклидову геометрію, можно построить множество; выяснилось, что и логическихъ япистемъ, составленныхъ въ томъ же порядкъ идей, что и геоме́ерія, можетъ быть не только одна. Выяснилось, что неудовлетворртельность существующихъ геометрическихъ системъ, ихжлнедостаточная логическая обоснованность, именно въ томъ илесренится, что всъ основныя понятія и постулаты такъ опред出дя, псь, тагъ устанавливались, что они были пригвождены къ ожному манекену, къ одному многообразію, къ тағъ называемомя? м п и р ичес ком у пространству.

Выясни.лось, какъ должна быть построена геометрія, если мы хотимъ, чтобы это была дьйствительно научнологическая система. Для этого нужно исходить изъ системы основныхъ понятій, которыя отнюдь не связываютъ насъ съ эмпирическимъ пространствомъ; нужно положить въ основу такія посылки, ноторыя могутъ быть перенесены въ другія многообразія, даже въ численныя, или аналитическіл.

Установивъ эти посылки, нужно доказать отсутствіе въ нихъ противоръчія и взаимную ихъ независимость. Средствомъ для этого служитъ ариөметика, анализъ, численныя, или аналитическія пространства. Чтобы доказать отсутствіе противорвчія въ систем постулатовъ, нужно построить аналитическое пространство, которое удовлетворяетъ всњмъ постулатамъ; эта возможность всбмъ постулатамъ удовлетворить и служитъ доказательствомъ отсутствія въ нихъ противорбчія. Для того же, чтоб́ы доказать независимость постулатовъ, чтобы доказать, что ни одинъ изъ ніихъ не представляетъ собой слбдствія остальныхъ, нужно- по выраженію Вельштейна - построить паталогическія пространства, по одному на каждый постулатъ, съ одной паталогической особенностью каждое. Чтобы доказать независимость каждаго постулата, нужно построить аналитическое пространство, удовлетворяющее всљмъ остальнымъ постулатамъ и не удовлетворяющее этому постулату. Возможность такого пространства обнар уживаетъ, что, принимая остальные постулаты, мы не в ын уждены принять и этотъ постулатъ, онъ поэтому отъ нихъ не зависитъ.

Установивъ такимъ образомъ систему независимых̇ъ постулатовъ, нужно построить на нихъ геометрію; нужно вести доказательство такъ, чтобы оно оставалось въ силь въ каждомъ многообразіи, которое удовлетворяетъ исходнымъ посылгамъ.

Эта задача во всемъ своемъ объемъ общепризнаннаго рфшенія еще не получила. Не мало нужно было еще затратить тржща́ и мысли, чтобы подготовить ржшеніе общей задачи тщателғ ввімъ анализомъ отдвльныхъ постулатовъ, отдъльныхъ вопросоюъ? Сюда относятся вопросы о расположеніи точекъ на прямой, જ Непрерывности, объ измъреніи длинъ, площадей и объемовъсй т. д.

Однако, въ 90 -хъ годахъ начинаютъ появллявся работы, посвященныя ржшенію задачи во всемъ ея объеля. Сюда, въ первую очередь, относится прекрасная работа Кададя которая далеко не

даетъ того, что нужно, но имъетъ большія заслуги въ тฺомъ отношеніи, что имъ въ первый разъ даны постулаты, которые дъйствительно даютъ возможность формально обосновать теорію расположенія точекъ на прямой. Задача перөносится затьмъ въ Италію. По почину Пеано, чрезвычайно тонкаго и глубокаго ученаго, за эту задачу принимается цхьыый рядъ молодыхъ ученыхъ: Амодео, Фано, Энрикесъ, Піери. Послбднему принадлежитъ, на нашъ взглядъ, заслуга построенія первой системы постулатовъ, которые дЋйствительно даютъ возможность формально развить геометрію. Вопросъ о независимости этихъ посылокъ остается открытымъ.

Входить здьсь въ изложеніе этихъ работъ, т. е. сопоставлять и оцънивать отдъльные постулаты, невозможно. Скажу только, что всњ эти работы долго оставались въ Европь почти неизвъстными, потому что онљ были помбщены въ весьма мало распространенныхъ итальянскихъ академическихъ изданіяхъ.

Честь построенія первой системы постулатовъ, дающихъ возможность формально развить геометрію, была, по моему убжжденію, незаслуженно приписана Гильберту.

Въ 1899 г., по случаю открытія памятника Гауссу и Beберу, Геттингенскій университетъ выпустилъ юбилейный сборникъ, состоящій изъ двухъ статей, посвященныхъ двумъ славнымъ современникамъ, обезсмертившимъ эту академію. Первая работа принадлежитъ профессору Гильберту и посвящена основамъ геометріи. Работа содержитъ цялый рядъ оригинальныхъ идей, въ высшей степени талантливо разработанныхъ. Но предложенная въ этомъ сочиненіи система посылокъ, опредъляющихъ Евклидову геометрію, на нашъ взглядъ, уступаетъ системъ Піери. Врядъ ли постулаты Гильберта вполнъ достаточны для обоснованія геометріи; а отъ ихъ независимости, на которой Гильбертъ насжаивалъ въ первомъ изданіи, онъ вынужденъ былъ отказаткิ́ся во второмъ.

Вопросъ объ обоснованіи геометріи стоитъ, кан马вы видите, въ той стадіи, когда еще нужно использовать идед вёликихъ геометровъ для удовлетворительнаго ръшенія вяқғөвой задачи.

Заинтересовавшись еще въ студенческде годы идеями Јобачевскаго, не будучи совершенно знакомлюљ работами итальянской школы, какъ ихъ не зналъ и Гйюрртъ, еще до появленія

работы послбдняго, я поставилъ себґ двлью установить систему посылокъ, опредъляющихъ Евклидову геометрію, и развить ее въ согласіи со всжми требованіями, которыя формулированы мною раньше и которыя вы читаете въ этихъ положеніяхъ. Эту систему посылокъ, не связанныхъ съ эмпирическимъ пространствомъ; и независимыхъ, поскольку для меня выяснено логическое значеніе этой идеи, я уже въ 1901 г. докладывалъ X съъзду русскихъ естествоиспытателей и врачей. Это есть синтетическое осуществленіе идей Римана, Гельмгольда и Ји. Но джйствительное вышолненіе задачи, развитіе самой системы геометріи на основаніи формальныхъ посылоъъ потребовали гораздо больше времени и работы, подчасъ мелочно кропотливой, а подчасъ и принципіально трудной, чъъмъ я себъ могъ представить. Я твмъ не менъе рєшился вышолнить эту задачу до конца и дать не планъ работы, а самую работу. Я былъ бы очень счастливъ,
 и уясненія идей великихъ геометровъ, полныхъ глубокаго математическаго и философскаго интереса, однимъ обширнымъ комментаріемъ которыхъ только и является настоящее сочиненіе.

Вбстнинъ Опытной Физиин ॥ Элементарной Математичи

выходитъ 24 раза въ годъ отдБльн ными выпусками не менье 24－хъ стр．каждый
подъ редакціей приватъ－ доцента В．Ф．Кагана．

ПРОГРАММА ЖУРНАЛА：Оригинальныя и переводныя статьи изъ обла－ сти физики и элементарной математики．Статьи，посвященныя вопро－ самъ преподаванія математики и физики．Опыты и приборы．Научная хроника．Разныя извћстія．Математическія мелочи．Темы для сотрудни－ ковъ．Задачи для рфшенія．Рфшенія предложенныхъ задачъ съ фамилі－ ями рєшившихъ．Упражненія для учениковъ．Задачи на премію．Биб－ ліографнческій отдълъ：обзоръ спеціальныхъ журналовъ；замґтки о но－ выхъ книгахъ．

Статьи составляются настолько популярно，насколько это возможно безъ ущерба для научной стороны двла．

Предыдущіе семестры были．рекомендованы：Учен．Ком．Мин．Нар． Пр．для гимн．муж．и жен．，реальн．уч．，прогимн．，город．уч．，учит．инст． и семинарій；Главн．Воен．－Учебн．Зав．－для воен．－уч．заведеній；Уч． Ком．при Св．Синод末 для дух．семин．и училищъ．

Пробный номеръ высылается БЕЗПЛАТНО по первому требованію． Важньйшія етатьн，помьщенныя въ 1907 г．

Проф．Мультонт Эволюція солнечной системы．－Н．Агроно－ мовъ．Задача Мальфатти．－Прив．－доц．В．Каганъ．Ученіе о непрерыв－ ности．－Поф．В．Оствальдъ．Къ современной энергетикъ．－Проф． Рамзай．Эмапація радія．－Ірив．－доц．В．Кагант Задача объ измђре－ ніи．－Проф．В．Оствальдъ：Фреобразованіө элементовъ．－Жизнь и дфя－ тельность Леонарда Эйлера．－Проф．Кастельнңово．Дидактическое значеніе математики и фнзики．－Г．Андро．Къ системъ Коперника．－ А．Кириловъ．Кь геометріи треугольника．－Проф．А．Клоссовскій． Температура и давленіе въ болже высокихъ слояхъ атмосферы．－Проф． А．Риги．Атомныя измねненія въ родіактивныхъ твлахъ．－Проф．Г．Гей－ бергъ．Новое сочиненіе Архимеда．－Д．Ефремовъ．О четырехуголь－ никахъ．－Лордъ Кельвинъ．－Проф．А．Риги．Объ электрической при－ родъ матеріи．－А．Турчаниновъ．Къ ветикой теоремね Фермата．－－Проф． Фёпль．Задача о падающей кошкь．－Проф．О．Леманъ．ЖЋидкіе кр сталлы и теоріи жизни．－Проф．Пеши．Задача изъ теоріи соединен⿺辶⿱亠⿻⿰丿亅八⿱㇒⿻二亅⿱八刀二小， поставленная лордомъ Кельвиномъ．

УСЛОВІЯ ПОДПИСКИ：

Подписная цъна съ пересылкой за годъ 6 руб．，за пољбода 3 руб． Учителя и учительницы низшихъ училищъ и всъ учаппееся，выписы－ вающіе журналъ непосредственно изъ конторы редакціи，пла－ тятъ за годъ 4 руб．，за полугодіе 2 руб．Долтускается разсрочка подписной платы по соглашенію съ коючорөй редакціи． Отдьпьные номера текущаго семестра по 30 к．，Хрошлыхъ семест．по 25 к．

Адресъ для корресп．：Одесса．Въ редакцію „Вьстника Опытной Физияи＂．

ІІ. ЛАКУР' и Я. АППЕЛЬ,
 ИСТОРИЧЕСКАЯ ФИЗИКА

Пер. съ нвмецкаго
подъ редакціей „Въстника Опытной Физики и Элементарной Математики ".
Свыше 800 стр. большого формата и 800 рис. въ тексть и на отдђльныхъ таблицахъ.

„ИСТОРИЧЕСКАЯ ФИЗИКА" занимаетъ совершенно особое мъсто въ ряду элементарныхъ сочиненій по физикъ: это есть и полный курсъ элементарной физики, и ея исторія. Авторы не только даютъ въ своей книг'в современное состояніе этой науки, но рисуютъ и ея историческое развитіе, результаты котораго охватываютъ такъ многосторонне и глубоко всю современную жизнь. Благодаря этому и благодаря отсутствію всякой техничности языка - книга изложена въ высшей степени общедоступно - „ИСТОРИЧЕСКАЯ ФИЗИКА* является книгой для самыхъ широкихъ круговъ читателей, особенно же для тьхъ, кто желалъ бы укрьпить свои познанія въ этой наукъ установленіемъ живой преемственной связи между ея различными дисциплинами, съ которыми знакомитъ средняя школа.

Сообразно своему характеру „ИСТОРИЧЕСКАЯ ФИЗИКА" об́ильно снабжена иллюстраціями, въ которыхъ ясно отражается историческое развитіе этой науки. Читатель найдетъ въ ней воспроизведенія рисунковъ Стевина, Декарта, Герике, Гальвани и др.

Опредъленіемо Основного отдъла Учен. Ком М. Н. Пь выпуска I признанг заслуживающимв вниманія при пополненіи ученическихг библіотежз среднихз учебныхз заведеній.

СОДЕРЖАНІЕ I TOMA. §§ 1-74 MIPОЗДАНІЕ. Свъдинія и отюрытія до 1630 а., §§ 75-114 СВЂТЬ. Отә древнийшихг временг до Нъютона. §§ 115-270. СИЛА. §§ 271-333. МІРОЗДАНІЕ. Свъдпнія и открытія послн 1630 года. §§ $334-377$. ЗВУКЪ. §§ 378-420. ПРИРОДА СВБТА. §§ 421-441. СПЕКТРАЛЬНЫЙ АНАЛИЗЪ.

СОДЕРЖАНІЕ II TOMA. §§ $1-189$. ТЕПЛОТА. §§ 190-250. МАГНИТИЗМЪ. §§ 251-303. ЭЛЕКТРИЧЕСТВО ДО 1790 года. §§ 304—408. ЭЛЕКТРИЧЕСКІЙ ТОКЪ. §§ 409-455. ПОГОДА.

$$
\text { Цьна } 7 \text { р. } 50 \text { к. }
$$

СЪ ТРЕБОВАНІЯМИ ОБРАЩАТЬСЯ:
Книгоиздатепьство „МАТЕЗИСЪ"-Одесса, уп. Новосепछ̆бккаго 66.

Изъ отзывовъ объ "Исторической физикьь".
Изъ Журн. М. Н. Пр. за денабрь 1907 г. „Нелььзя не приввтствовать этого интереснаго изданія...
„Книга читается легко; она содержй весьма удачно подобранный матеріалъ и обильно снабжена хорошо выполненными рисунками. Переводъ никакихъ замьчаній не вызываетъ. Цъна, при подпискъ, невысокая, а потому представляется весьма желательнымъ, чтобы наши среднія учебныя заведенія подписались на эту интересную книгу".

Проф. О. Хвольсонъ.

Вышли въ свьтъ слђдующія изданія:

1 и 2. Абрагамг, проф. Сборникъ эпементарныхъ опытовъ по физикъ, составленный при участіи многихъ профессоровъ и преподавателей физики. Пер. съ фр. подъ ред. прив.-доц. Б. П. Вейнберга.

Часть I: Работы въ мастерской. Различные рецепты - Геометрія. Механика - Гидростатика. Гидродинамика. Капиллярность. Теплота - Числовыя таблицы.

XVI +272 стр. Со многими (свыше 300) рис. Цъна 1 р. 50 к.
Учен. Ком М. Н. Пр. допумено вб учен. библ. средн. учебн, зав. учит. сем. и гор., по Пол. з1 мая І872 г., училицб, а равно и въ бези. нар. чит. библ.

Часть II: Звукъ-Свьтъ-Электричество-Магнитизмъ.
LXXV +434 стр. со многими (свыше 400) рис. Цьна 2 р. 75 к.
3. С. Арреніусб́, проф. Физика неба. Разръшенный авторомъ и дополненный по его указаніямъ пер. съ нъм. подъ ред. прив.-доц. A. P. Орбинскаго. Содержаніе: Неподвижныя звъзды-Солнечная система-Солнце-Планеты, ихъ спутники и кометы-Космогонія.

VIII +250 стр. Съ 66 черными и 2 цвътными рис. въ текстъ и 1 черной и 1 цввтной отдछльными таблицами. Цъна 2 руб.
Учен. Ком. М. Н. Пр. допущено вг учен., стари. возр., библ. средн. учебн. заведеній, а равно и вб безп.л. нар. библ. и читальни.

Успьхи физики, Сборникъ статей о важньйшихъ открытіяхъ послвднихъ лвтъ въ общедоступномъ изложеніи, подъ ред. „Въстн. Оп. Физики и Элементарной Математики". Содержаніе: Винерг, Расширеніе нашихъ чувствъ-Пильиижовъ. Радій и радіоактивность-Рихариб, Электрическія волны-Слаби, Телеграфированіе безъ проводовъ-Шмидмъ, Задача объ элементарномъ веществъ (основанія теоріи электроновъ).

IV $+144 \mathrm{ctp} . \mathrm{C}_{\text {ъ }} 41$ рис. и 2 таблицами. Изд 2 -е. Цьна 75 коп.
Уиен. Ком. М. Н. П. первое изданіе допумено вг учен., стари. возр., библ. средн. учебн. заведеній, а равно и во безил. нар. библ. и читальни.
5. Ф. Ауэрбахдг, проф. Царица міраи ея тьнь. Общедоступное изложеніе основаній ученія объ энергіи и энтропіи. Пер. съ пвм. Съ предисловіемъ III. Э. Гилъома, Вице-Директора Международнаго Бюро Мъръ и Въсовъ.

$$
\text { VIII }+56 \text { стр. Изд. 2-е. Цъна } 40 \text { к. }
$$

Учен. Ком. М. Н. П. первое изданіе допумено вб уиен., стари. возр., библ средн. учебн. заведеній, а равно и вг безпл. нар. библ. и читальни.
6. С. Ньюкомъ, проф. Астрономія для всьхъ. Пер. съ англ. Съ предисловіемъ прив.-доц. A. P. Орбинскаго.
XXIV +285 стр. Съ портретомъ Автора, 64 рис. и 1 таблицей. Цьна 1 р. 50 кл Учен Ком. М. Н. П. допуицено вб учен., стари. возр., библ средн. ууєбй. заведеній, а равно и вг безпл. нар. библ. и читальни.
7. Г. Веберъ и I. Велъзтейнг. Энцикпопедія эпементарнбй математики. Томъ I. Энцикпопедія элементарной апгебры, обраб. проф. Веберомг. Пер. съ нвм.. подъ ред. ирив. доц. В. Ф. Кагана. Книга I, Основанія ариөметини, гл. I-X. Книга II. Алгебра, гл. XI-XIX. Книга III. Анализз гл. XX XXVIJI. 650 стр. Цвна 3 р. 50 к.
Учен. Ком. М. Н. П. признана заслуживаюощей взшнанія ири пополн. уч. библ. среди. учебн. заведенй»
8. Дж. Перри, проф. Вращающійся вопчокъ. Публичная лекція. Пер. съ англ. VII+96 стр. 63 рис. Цьна 60 к.
Учен. Ком. М. Н. Пр. признана заслуживающей вниманія ири пополненіи учен. библ. средн. учебн. заведеній.
9. P. Дедекиндб, проф. Непрерывность и ирраціонапьныя ииспа. Пер. прив.-доц. С. Шатуновскаго съ приложеніемъ его статьи Доказатепьство существованія трансц=ндентныхъ иисепъ 40 стр. Цъна 40 к. Учен. Ком. М. Н. Пр. признана заслуживающей вниманія при попо.гненіи учен. библ. средн. учебн. заведеній.
10. К. Шейдб̃, проф. Простые химическіе опыты дпя юношества. Пер. съ нъм., подъ ред. лаборанта Новороссійскаго университета E. С. Елъчанинова. 192 стр. съ 79 рис. Ц. 1 р. 20 к.
11. Э Вихертг, проф. Введеніе вь геодезію. Лекціи для преподавателей средн. учебн. заведеній. Пер. съ ньм. 80 стр. съ 41 рис. Цъна 35 коп.
12. Б. ШМидгг. Фипософская христоматія. Пособіе для среднихъ учебныхъ заведеній и для самообразованія. Пер. съ ньм. подъ ред. проф. Н. Н. Ланге. 170 стр. Цьна 1 руб.
Учен. Ком. М. Н. Пр. признана заслуживающей вниманія при пополн. учен. библ. средн. учебн. зав.
13. С. Тромгольтг. Игры со спичками. Задачи и развлеченія. Пер. съ ньм. 146 стр Со многими рис. Цвна 50 коп.
14. A. Риги, проф. Современная теорія физическихъ явпеній. (Радіоактивность, іоны, электроны). Пер. съ III-го (1907) итал. изданія. XII +156 стр. Съ 21 рис. Ц. 1 руб.
15. В. Ветгэмд, проф. Современное развитіе физики. Пер. съ англ. подъ ред. прив.-доц. Б. П. Вейнберга и А. Р. Орбинскаго. Съ прилож. ръчи перваго министра Англіи A. J. Baljour: Ньскопько мыспей о новой теоріи вещества. VIII +319 сгр. Съ 5 портр., 6 отдвльн. табл. и 33 рис. въ текстъ. Ц. 2 р.
16. П. Лакуръ и Я. Аппелъ. Историческая физика. Пер. съ нъм. подъ ред. „Въстника Опытной Физики и Элементарн. Математики." Подробности ниже.
17. А. В. Клоссовскій, заслужен. проф. Физииеская жизнь нашей ппанеты. Изд. 2 -е. исправлен. и дополнен. 45 стр. Цъна 40 к.
18. С. А. Арреніусб. Образованіе міровъ. Пер. съ нвм. подъ ред. проф. Имп. Юрьевск. Унив. К. Д. Покровскаго. Ц. 1 р. 75 к.
19. Н. Г. Уиинскій, проф. Пекціи по бактеріопогіи. VIII +136 стр. съ 34 рис. на отдвльныхъ 15 таблицахъ. Ц. 1 р. 50 к.

Печатаются и готовятся къ печати:

Ф. Кеджори, проф. Исторія эпементарной математики съ нькоторыми указаніями дпя преподаватепей. Пер. съ англ. подъ ред. и съ примъчаніями прив.-доц. И. Ю. Тимченко.
О. Леманб, проф. Жидкіе кристаппы и теоріи жизни. Пер. съ ньм.

Сундара Poy. Геометрическія упражненія сь кускомъ бумаги. Пер. Съ англ.

Веберz и Вельштейнг, проф. Энцикпопедія эпементарной геометріи.
А. В. Клоссовскій, проф. Основы метеоропогіи.
Д. Ефрремовг. Новая геометрія треугопьника. $334+$ XIIсотр. Ц. 2 руб.
Ф. Линдеманъ. Форма и спектрь атомовъ. Пер. съ Пвм. 24 стр. Ц. 20 к.
Ф. Мультонг, проф. Эвопюція сопнеиной сиदтемы: Ціна 50 коп.

Подробный катапогъ изданій высылается гяо Требованію безплатно.
Выписывающіе изъ склада изданій „МАТезисъ" (Одесса, Новосельск. 66) на сумму 5 p. и болће за пересылку не платятъ.

Mar, 8
 8 p

[^0]: *) В. Каганъ. „Основанія геометріи". Часть дипытъ обоснованія евклидовой геометріи. Часть II. Историческій очеркъ развитія ученія объ основаніяхъ геометріи.

